Electron pitch-angle diffusion: resonant scattering by waves vs. nonadiabatic effects

نویسندگان

  • A. V. Artemyev
  • V. V. Krasnoselskikh
چکیده

In this paper we investigate the electron pitchangle diffusion coefficients in the night-side inner magnetosphere around the geostationary orbit (L∼ 7) due to magnetic field deformation. We compare the effects of resonant wave–particle scattering by lower band chorus waves and the adiabaticity violation of electron motion due to the strong curvature of field lines in the vicinity of the equator. For a realistic magnetic field configuration, the nonadiabatic effects are more important than the wave–particle interactions for high energy (> 1 MeV) electrons. For smaller energy, the scattering by waves is more effective than nonadiabatic one. Moreover, the role of nonadiabatic effects increases with particle energy. Therefore, to model electron scattering and transport in the night-side inner magnetosphere, it is important to take into account the peculiarities of high-energy electron dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves

[1] Using statistical wave power spectral profiles obtained from CRRES and the latitudinal distributions of wave propagation modeled by the HOTRAY code, a quantitative analysis has been performed on the scattering of plasma sheet electrons into the diffuse auroral zone by multiband electrostatic electron cyclotron harmonic (ECH) emissions near L = 6 within the 0000–0600 MLT sector. The results ...

متن کامل

Enhanced Phase Space Diffusion due to Chaos in Relativistic Electron - Whistler Mode Wave Particle Interactions with Applications

Using numerical solutions of single particle dynamics, we consider a chaotic electron-whistler interaction mechanism for enhanced diffusion in phase space. This process, when applied to parameters consistent with the Jovian magnetosphere, is a candidate mechanism for pitch angle scattering in the Io torus, thus providing a source of auroral precipitating electrons. We initially consider the int...

متن کامل

Test particle simulation of the Electron Firehose instability

In the course of the energization of electrons to energies of some tens of keV during the impulsive phase of a solar flare, the velocity distribution function of the electrons is predicted to become anisotropic with T e ‖ > T e ⊥ (Here, ‖ and ⊥ denote directions with respect to the background magnetic field). Such a configuration can become unstable to the so-called Electron Firehose instabilit...

متن کامل

Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit

Using five spacecraft in geosynchronous orbit, plasmaspheric drainage plumes are located in the dayside magnetosphere and the measured pitch angle anisotropies of radiation belt electrons are compared duskward and dawnward of the plumes. Two hundred twenty-six plume crossings are analyzed. It is found that the radiation belt anisotropy is systematically greater dawnward of plumes (before the el...

متن کامل

Direct detection of resonant electron pitch angle scattering by whistler waves in a laboratory plasma.

Resonant interactions between energetic electrons and whistler mode waves are an essential ingredient in the space environment, and in particular in controlling the dynamic variability of Earth's natural radiation belts, which is a topic of extreme interest at the moment. Although the theory describing resonant wave-particle interaction has been present for several decades, it has not been hith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013